Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.296
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10251, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704512

RESUMO

Mesenchymal stem cells (MSCs) exert their anti-inflammatory and anti-fibrotic effects by secreting various humoral factors. Interferon-gamma (IFN-γ) can enhance these effects of MSCs, and enhancement of regulatory T (Treg) cell induction is thought to be an underlying mechanism. However, the extent to which Treg cell induction by MSCs pretreated with IFN-γ (IFN-γ MSCs) ameliorates renal fibrosis remains unknown. In this study, we investigated the effects of Treg cell induction by IFN-γ MSCs on renal inflammation and fibrosis using an siRNA knockdown system. Administration of IFN-γ MSCs induced Treg cells and inhibited infiltration of inflammatory cells in ischemia reperfusion injury (IRI) rats more drastically than control MSCs without IFN-γ pretreatment. In addition, administration of IFN-γ MSCs more significantly attenuated renal fibrosis compared with control MSCs. Indoleamine 2,3-dioxygenase (IDO) expression levels in conditioned medium from MSCs were enhanced by IFN-γ pretreatment. Moreover, IDO1 knockdown in IFN-γ MSCs reduced their anti-inflammatory and anti-fibrotic effects in IRI rats by reducing Treg cell induction. Our findings suggest that the increase of Treg cells induced by enhanced secretion of IDO by IFN-γ MSCs played a pivotal role in their anti-fibrotic effects. Administration of IFN-γ MSCs may potentially be a useful therapy to prevent renal fibrosis progression.


Assuntos
Fibrose , Indolamina-Pirrol 2,3,-Dioxigenase , Interferon gama , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Linfócitos T Reguladores , Animais , Interferon gama/metabolismo , Linfócitos T Reguladores/imunologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Rim/patologia , Rim/efeitos dos fármacos , Traumatismo por Reperfusão/imunologia , Nefropatias/terapia , Nefropatias/patologia , Ratos Sprague-Dawley
2.
Gut Microbes ; 16(1): 2347025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693666

RESUMO

Helicobacter pylori (H. pylori) causes a diversity of gastric diseases. The host immune response evoked by H. pylori infection is complicated and can influence the development and progression of diseases. We have reported that the Group 2 innate lymphocytes (ILC2) were promoted and took part in building type-2 immunity in H. pylori infection-related gastric diseases. Therefore, in the present study, we aim to clarify how H. pylori infection induces the activation of ILC2. It was found that macrophages were necessary for activating ILC2 in H. pylori infection. Mechanistically, H. pylori infection up-regulated the expression of indoleamine 2,3-dioxygenase (IDO) in macrophages to induce M2 polarization, and the latter secreted the alarmin cytokine Thymic Stromal Lymphopoietin (TSLP) to arouse ILC2.


Assuntos
Citocinas , Infecções por Helicobacter , Helicobacter pylori , Imunidade Inata , Macrófagos , Helicobacter pylori/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Animais , Camundongos , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Linfopoietina do Estroma do Timo , Linfócitos/imunologia , Humanos
3.
Int Immunopharmacol ; 133: 112062, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652967

RESUMO

Parkinson's Disease (PD) is the second most common neurodegenerative disease where central and peripheral immune dysfunctions have been pointed out as a critical component of susceptibility and progression of this disease. Dendritic cells (DCs) and monocytes are key players in promoting immune response regulation and can induce the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) under pro-inflammatory environments. This enzyme with catalytic and signaling activity supports the axis IDO1-KYN-aryl hydrocarbon receptor (AhR), promoting disease-specific immunomodulatory effects. IDO1 is a rate-limiting enzyme of the kynurenine pathway (KP) that begins tryptophan (Trp) catabolism across this pathway. The immune functions of the pathway, which are extensively described in cancer, have been forgotten so far in neurodegenerative diseases, where a chronic inflammatory environment underlines the progression of the disease. Despite dysfunctions of KP have been described in PD, these are mainly associated with neurotoxic functions. With this review, we aim to focus on the immune properties of IDO1+DCs and IDO1+monocytes as a possible strategy to balance the pro-inflammatory profile described in PD. We also highlight the importance of exploring the role of dopaminergic therapeutics in IDO1 modulation to possibly optimize current PD therapeutic strategies.


Assuntos
Células Dendríticas , Indolamina-Pirrol 2,3,-Dioxigenase , Monócitos , Doença de Parkinson , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Humanos , Células Dendríticas/imunologia , Doença de Parkinson/imunologia , Monócitos/imunologia , Animais , Cinurenina/metabolismo , Triptofano/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
4.
Sci Rep ; 14(1): 9386, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653790

RESUMO

Discovering effective anti-cancer agents poses a formidable challenge given the limited efficacy of current therapeutic modalities against various cancer types due to intrinsic resistance mechanisms. Cancer immunochemotherapy is an alternative strategy for breast cancer treatment and overcoming cancer resistance. Human Indoleamine 2,3-dioxygenase (hIDO1) and human Tryptophan 2,3-dioxygenase 2 (hTDO2) play pivotal roles in tryptophan metabolism, leading to the generation of kynurenine and other bioactive metabolites. This process facilitates the de novo synthesis of Nicotinamide Dinucleotide (NAD), promoting cancer resistance. This study identified a new dual hIDO1/hTDO2 inhibitor using a drug repurposing strategy of FDA-approved drugs. Herein, we delineate the development of a ligand-based pharmacophore model based on a training set of 12 compounds with reported hIDO1/hTDO2 inhibitory activity. We conducted a pharmacophore search followed by high-throughput virtual screening of 2568 FDA-approved drugs against both enzymes, resulting in ten hits, four of them with high potential of dual inhibitory activity. For further in silico and in vitro biological investigation, the anti-hypercholesterolemic drug Pitavastatin deemed the drug of choice in this study. Molecular dynamics (MD) simulations demonstrated that Pitavastatin forms stable complexes with both hIDO1 and hTDO2 receptors, providing a structural basis for its potential therapeutic efficacy. At nanomolar (nM) concentration, it exhibited remarkable in vitro enzyme inhibitory activity against both examined enzymes. Additionally, Pitavastatin demonstrated potent cytotoxic activity against BT-549, MCF-7, and HepG2 cell lines (IC50 = 16.82, 9.52, and 1.84 µM, respectively). Its anticancer activity was primarily due to the induction of G1/S phase arrest as discovered through cell cycle analysis of HepG2 cancer cells. Ultimately, treating HepG2 cancer cells with Pitavastatin affected significant activation of caspase-3 accompanied by down-regulation of cellular apoptotic biomarkers such as IDO, TDO, STAT3, P21, P27, IL-6, and AhR.


Assuntos
Antineoplásicos , Reposicionamento de Medicamentos , Indolamina-Pirrol 2,3,-Dioxigenase , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Triptofano Oxigenase/antagonistas & inibidores , Triptofano Oxigenase/metabolismo , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Farmacóforo
5.
Front Immunol ; 15: 1367734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680494

RESUMO

The aryl hydrocarbon receptor (AhR) is a transcription factor that is activated by various ligands, including pollutants, microorganisms, and metabolic substances. It is expressed extensively in pulmonary and intestinal epithelial cells, where it contributes to barrier defense. The expression of AhR is pivotal in regulating the inflammatory response to microorganisms. However, dysregulated AhR expression can result in endocrine disorders, leading to immunotoxicity and potentially promoting the development of carcinoma. This review focuses on the crucial role of the AhR in facilitating and limiting the proliferation of pathogens, specifically in relation to the host cell type and the species of etiological agents involved in microbial pathogen infections. The activation of AhR is enhanced through the IDO1-AhR-IDO1 positive feedback loop, which is manipulated by viruses. AhR primarily promotes the infection of SARS-CoV-2 by inducing the expression of angiotensin-converting enzyme 2 (ACE2) and the secretion of pro-inflammatory cytokines. AhR also plays a significant role in regulating various types of T-cells, including CD4+ T cells and CD8+ T cells, in the context of pulmonary infections. The AhR pathway plays a crucial role in regulating immune responses within the respiratory and intestinal barriers when they are invaded by viruses, bacteria, parasites, and fungi. Additionally, we propose that targeting the agonist and antagonist of AhR signaling pathways could serve as a promising therapeutic approach for combating pathogen infections, especially in light of the growing prevalence of drug resistance to multiple antibiotics.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , COVID-19 , Inflamação , Receptores de Hidrocarboneto Arílico , SARS-CoV-2 , Receptores de Hidrocarboneto Arílico/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , COVID-19/imunologia , SARS-CoV-2/fisiologia , SARS-CoV-2/imunologia , Animais , Transdução de Sinais , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo
6.
Bioorg Med Chem Lett ; 106: 129731, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621594

RESUMO

The inhibition of kynurenine production is considered a promising target for cancer immunotherapy. In this study, an amino acid derivative, compound 1 was discovered using a cell-based assay with our screening library. Compound 1 suppressed kynurenine production without inhibiting indoleamine 2,3-dioxygenase 1 (IDO1) activity. The activity of 1 was derived from the inhibition of IDO1 by a metabolite of 1, O-benzylhydroxylamine (OBHA, 2a). A series of N-substituted 2a derivatives that exhibit potent activity in cell-based assays may represent effective prodrugs. Therefore, we synthesized and evaluated novel N,O-substituted hydroxylamine derivatives. The structure-activity relationships revealed that N,O-substituted hydroxylamine 2c inhibits kynurenine production in a cell-based assay. We conducted an in vivo experiment with 2c, although the effectiveness of O-substituted hydroxylamine derivatives in vivo has not been previously reported. The results indicate that N,O-substituted hydroxylamine derivatives are promising IDO1 inhibitors.


Assuntos
Hidroxilamina , Indolamina-Pirrol 2,3,-Dioxigenase , Cinurenina , Cinurenina/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Relação Estrutura-Atividade , Humanos , Hidroxilamina/química , Hidroxilamina/farmacologia , Hidroxilaminas/química , Hidroxilaminas/farmacologia , Estrutura Molecular , Animais , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Relação Dose-Resposta a Droga
7.
J Transl Med ; 22(1): 267, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468343

RESUMO

BACKGROUND: Mitophagy, a prominent cellular homeostasis process, has been implicated in modulating endothelial cell function. Emerging evidence suggests that extracellular vesicles (EVs) participate in intercellular communication, which could modulate tumor angiogenesis, a hallmark of ovarian cancer (OC) progression. However, the underlying mechanisms through how EVs regulate endothelial mitophagy associated with tumor angiogenesis during OC development remain obscure. METHODS: The effect of cancer cell-derived EVs on endothelial mitophagy and its correlation with tumor angiogenesis and OC development were explored by in vitro and in vivo experiments. Multi-omics integration analysis was employed to identify potential regulatory mechanisms of cancer cell-derived EVs on endothelial mitophagy, which is involved in tumor angiogenesis associated with OC development. These insights were then further corroborated through additional experiments. An orthotopic OC mouse model was constructed to assess the antiangiogenic and therapeutic potential of the Indoleamine 2,3 dioxygenase-1 (IDO1) inhibitor. RESULTS: Cancer cell-derived EVs promoted tumor angiogenesis via the activation of endothelial mitophagy, contributing to the growth and metastasis of OC. The aberrantly high expression of IDO1 mediated abnormal tryptophan metabolism in cancer cells and promoted the secretion of L-kynurenine (L-kyn)-enriched EVs, with associated high levels of L-kyn in EVs isolated from both the tumor tissues and patient plasma in OC. EVs derived from IDO1high ovarian cancer cells elevated nicotinamide adenine dinucleotide (NAD +) levels in endothelial cells via delivering L-kyn. Besides, IDO1high ovarian cancer cell-derived EVs upregulated sirt3 expression in endothelial cells by increasing acetylation modification. These findings are crucial for promoting endothelial mitophagy correlated with tumor angiogenesis. Notably, both endothelial mitophagy and tumor angiogenesis could be suppressed by the IDO1 inhibitor in the orthotopic OC mouse model. CONCLUSIONS: Together, our findings unveil a mechanism of mitophagy in OC angiogenesis and indicate the clinical relevance of EV enriched L-kyn as a potential biomarker for tumorigenesis and progression. Additionally, IDO1 inhibitors might become an alternative option for OC adjuvant therapy.


Assuntos
Vesículas Extracelulares , Neoplasias Ovarianas , Animais , Camundongos , Humanos , Feminino , Cinurenina/metabolismo , Células Endoteliais/metabolismo , Angiogênese , Mitofagia , Neovascularização Patológica , Vesículas Extracelulares/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo
8.
Tuberculosis (Edinb) ; 146: 102495, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460493

RESUMO

In about 1% of tuberculosis (TB) patients, Mycobacterium tuberculosis (M. tuberculosis) can disseminate to the meninges, causing tuberculous meningitis (TBM) with mortality rate up to 60%. Chronic granulomatous inflammation (non-necrotizing and necrotizing) in the brain is the histological hallmark of TBM. The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) and the generated kynurenine metabolites exert major effector functions relevant to TB granuloma functioning. Here we have assessed immunohistochemically IDO1 expression and activity and its effector function and that of its isoform, IDO2, in post-mortem brain tissue of patients that demised with neurotuberculosis. We also related these findings to brain tissue of fatal/severe COVID-19. In this study, IDO1 and IDO2 were abundantly expressed and active in tuberculoid granulomas and were associated with the presence of M. tuberculosis as well as markers of autophagy and apoptosis. Like in fatal/severe COVID-19, IDO2 was also prominent in specific brain regions, such as the inferior olivary nucleus of medulla oblongata and cerebellum, but not associated with granulomas or with M. tuberculosis. Spatially associated apoptosis was observed in TBM, whereas in fatal COVID-19 autophagy dominated. Together, our findings highlight IDO2 as a potentially relevant effector enzyme in TBM, which may relate to the symptomology of TBM.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Mycobacterium tuberculosis , Tuberculose Meníngea , Humanos , COVID-19 , Granuloma , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação , Mycobacterium tuberculosis/metabolismo , Triptofano , Tuberculose Meníngea/metabolismo , Tuberculose Meníngea/patologia
9.
Mod Pathol ; 37(4): 100450, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369188

RESUMO

Indoleamine 2,3-dioxygenase (IDO) and arginase-1 (ARG1) are amino acid-metabolizing enzymes, frequently highly expressed in cancer. Their expression may deplete essential amino acids, lead to immunosuppression, and promote cancer growth. Still, their expression patterns, prognostic significance, and spatial localization in the colorectal cancer microenvironment are incompletely understood. Using a custom 10-plex immunohistochemistry assay and supervised machine learning-based digital image analysis, we characterized IDO and ARG1 expression in monocytic cells, granulocytes, mast cells, and tumor cells in 833 colorectal cancer patients. We evaluated the prognostic value and spatial arrangement of IDO- and ARG1-expressing myeloid and tumor cells. IDO was mainly expressed not only by monocytic cells but also by some tumor cells, whereas ARG1 was predominantly expressed by granulocytes. Higher density of IDO+ monocytic cells was an independent prognostic factor for improved cancer-specific survival both in the tumor center (Ptrend = .0002; hazard ratio [HR] for the highest ordinal category Q4 [vs Q1], 0.51; 95% CI, 0.33-0.79) and the invasive margin (Ptrend = .0015). Higher density of granulocytes was associated with prolonged cancer-specific survival in univariable models, and higher FCGR3+ARG1+ neutrophil density in the tumor center also in multivariable analysis (Ptrend = .0020). Granulocytes were, on average, located closer to tumor cells than monocytic cells. Furthermore, IDO+ monocytic cells and ARG1- granulocytes were closer than IDO- monocytic cells and ARG1+ granulocytes, respectively. The mRNA expression of the IDO1 gene was assessed in myeloid and tumor cells using publicly available single-cell RNA sequencing data for 62 colorectal cancers. IDO1 was mainly expressed in monocytes and dendritic cells, and high IDO1 activity in monocytes was associated with enriched immunostimulatory pathways. Our findings provided in-depth information about the infiltration patterns and prognostic value of cells expressing IDO and/or ARG1 in the colorectal cancer microenvironment, highlighting the significance of host immune response in tumor progression.


Assuntos
Arginase , Neoplasias Colorretais , Indolamina-Pirrol 2,3,-Dioxigenase , Humanos , Arginase/metabolismo , Neoplasias Colorretais/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Células Mieloides/metabolismo , Prognóstico , Microambiente Tumoral
10.
Int Immunopharmacol ; 130: 111692, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38382261

RESUMO

BACKGROUND: Hepatic Ischemia-reperfusion (I/R) injury, critical challenge in liver surgery and transplantation, exerts a significant impact on the prognosis and survival of patients. Inflammation and cell death play pivotal roles in pathogenesis of hepatic I/R injury. Indoleamine 2, 3-dioxygenase 1 (IDO-1), a key enzyme involved in the kynurenine pathway, has been extensively investigated for its regulatory effects on innate immune responses and cell ferroptosis. However, the precise involvement of IDO-1 in hepatic I/R injury remains unclear. METHODS: IDO-1 knockout mice were generated to establish a murine model of liver partial warm ischemia and reperfusion, while an in vitro Hypoxia/Reoxygenation (H/R) model was employed to simulate ischemia/reperfusion injury. RESULTS: The involvement of ferroptosis was observed to be involved in hepatic I/R injury, and effective mitigation of liver injury was achieved through the inhibition of ferroptosis. In the context of hepatic I/R injury, up-regulation of IDO-1 was found in macrophages exhibiting prominent M1 polarization and impaired efferocytosis. Deficiency or inhibition of IDO-1 alleviated hepatocytes ferroptosis and M1 polarization induced by hepatic I/R injury, while also enhancing M2 polarization and promoting efferocytosis in macrophages. Furthermore, depletion of macrophages attenuated ferroptosis in hepatocytes induced by hepatic I/R injury. CONCLUSION: This study highlights the crucial role of IDO-1 activation in macrophages in triggering ferroptosis in hepatocytes during hepatic ischemia-reperfusion injury. Our findings suggest that targeting IDO-1 could be a promising therapeutic strategy for mitigating hepatic I/R injury associated with liver surgery and transplantation.


Assuntos
Ferroptose , Indolamina-Pirrol 2,3,-Dioxigenase , Hepatopatias , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Hepatócitos/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Isquemia/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , Traumatismo por Reperfusão/metabolismo
11.
J Gastroenterol ; 59(4): 342-356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402297

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a rapidly progressing chronic liver disease of global significance. However, the underlying mechanisms responsible for NASH remain unknown. Indoleamine 2,3-dioxygenase 1 (IDO1) has been recognized as essential factor in immune response and metabolic regulation. Here we aimed to investigate the functions and mechanisms of the IDO1 in macrophages on hepatic lipid deposition and iron metabolism in NASH. METHODS: The effect of IDO1 in NASH was evaluated by WT and IDO1-/- mice model fed with methionine/choline-deficient (MCD) diet in vivo. Macrophages scavenger clodronate liposomes (CL) and overexpressing of IDO1 in macrophages by virus were employed as well. Lipid deposition was assessed through pathological examination and lipid droplet staining, while iron levels were measured using an iron assay kit and western blotting. Primary hepatocytes and bone marrow-derived macrophages were treated with oleic acid/palmitic acid (OA/PA) to assess IDO1 expression via Oil Red O staining and immunofluorescence staining in vitro. RESULTS: Pathological images demonstrated that the increase of IDO1 exacerbated lipid accumulation in the livers of mice with MCD diet, while reduction of iron accumulation was observed in the liver and the serum of MCD-fed mice. Scavenging of macrophages effectively mitigated both lipid and iron accumulation. In addition, the deficiency of IDO1 in macrophages significantly mitigated lipid accumulation and iron overload in hepatic parenchymal cells. Finally, lentivirus-mediated overexpression of IDO1 in liver macrophages exacerbated hepatic steatosis and iron deposition in NASH. CONCLUSIONS: Our results demonstrated that effective inhibition of IDO1 expression in macrophages in NASH alleviated hepatic parenchymal cell lipid accumulation and iron deposition, which provided new insights for the future treatment of NASH.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Colina , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ferro/metabolismo , Ferro/farmacologia , Metabolismo dos Lipídeos , Fígado/patologia , Macrófagos/metabolismo , Metionina , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Palmítico/farmacologia
12.
J Immunol ; 212(7): 1232-1243, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391297

RESUMO

Pharmacological inhibition of IDO1 exhibits great promise as a strategy in cancer therapy. However, the failure of phase III clinical trials has raised the pressing need to understand the underlying reasons for this outcome. To gain comprehensive insights into the reasons behind the clinical failure of IDO1 inhibitors, it is essential to investigate the entire tumor microenvironment rather than focusing solely on individual cells or relying on knockout techniques. In this study, we conducted single-cell RNA sequencing to determine the overall response to apo-IDO1 inhibitor administration. Interestingly, although apo-IDO1 inhibitors were found to significantly activate intratumoral immune cells (mouse colon cancer cell CT26 transplanted in BALB/C mice), such as T cells, macrophages, and NK cells, they also stimulated the infiltration of M2 macrophages. Moreover, these inhibitors prompted monocytes and macrophages to secrete elevated levels of IL-6, which in turn activated the JAK2/STAT3 signaling pathway in tumor cells. Consequently, this activation enables tumor cells to survive even in the face of heightened immune activity. These findings underscore the unforeseen adverse effects of apo-IDO1 inhibitors on tumor cells and highlight the potential of combining IL-6/JAK2/STAT3 inhibitors with apo-IDO1 inhibitors to improve their clinical efficacy.


Assuntos
Inibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenase , Interleucina-6 , Neoplasias , Animais , Camundongos , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Linfócitos T/metabolismo , Microambiente Tumoral
13.
Cancer Res ; 84(10): 1659-1679, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382068

RESUMO

The tumor microenvironment (TME) in renal cell carcinomas (RCC) is marked by substantial immunosuppression and immune resistance despite having extensive T-cell infiltration. Elucidation of the mechanisms underlying immune evasion could help identify therapeutic strategies to boost the efficacy of immune checkpoint blockade (ICB) in RCC. This study uncovered a mechanism wherein the polyadenylate-binding protein PABPC1L modulates indoleamine 2,3-dioxygenase 1 (IDO1), a prospective target for immunotherapy. PABPC1L was markedly upregulated in RCC, and high PABPC1L expression correlated with unfavorable prognosis and resistance to ICB. PABPC1L bolstered tryptophan metabolism by upregulating IDO1, inducing T-cell dysfunction and Treg infiltration. PABPC1L enhanced the stability of JAK2 mRNA, leading to increased JAK2-STAT1 signaling that induced IDO1 expression. Additionally, PABPC1L-induced activation of the JAK2-STAT1 axis created a positive feedback loop to promote PABPC1L transcription. Conversely, loss of PABPC1L diminished IDO1 expression, mitigated cytotoxic T-cell suppression, and enhanced responsiveness to anti-PD-1 therapy in patient-derived xenograft models. These findings reveal the crucial role of PABPC1L in facilitating immune evasion in RCC and indicate that inhibiting PABPC1L could be a potential immunotherapeutic approach in combination with ICB to improve patient outcomes. SIGNIFICANCE: PABPC1L functions as a key factor in renal cell carcinoma immune evasion, enhancing IDO1 and impeding T-cell function, and represents a potential target to enhance the efficacy of immune checkpoint blockade therapy.


Assuntos
Carcinoma de Células Renais , Indolamina-Pirrol 2,3,-Dioxigenase , Neoplasias Renais , Triptofano , Microambiente Tumoral , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/tratamento farmacológico , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Humanos , Neoplasias Renais/imunologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/tratamento farmacológico , Triptofano/metabolismo , Animais , Camundongos , Microambiente Tumoral/imunologia , Janus Quinase 2/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Regulação Neoplásica da Expressão Gênica , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Hum Mol Genet ; 33(7): 594-611, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38181046

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal degenerative muscle wasting disease caused by the loss of the structural protein dystrophin with secondary pathological manifestations including metabolic dysfunction, mood and behavioral disorders. In the mildly affected mdx mouse model of DMD, brief scruff stress causes inactivity, while more severe subordination stress results in lethality. Here, we investigated the kynurenine pathway of tryptophan degradation and the nicotinamide adenine dinucleotide (NAD+) metabolic pathway in mdx mice and their involvement as possible mediators of mdx stress-related pathology. We identified downregulation of the kynurenic acid shunt, a neuroprotective branch of the kynurenine pathway, in mdx skeletal muscle associated with attenuated peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) transcriptional regulatory activity. Restoring the kynurenic acid shunt by skeletal muscle-specific PGC-1α overexpression in mdx mice did not prevent scruff -induced inactivity, nor did abrogating extrahepatic kynurenine pathway activity by genetic deletion of the pathway rate-limiting enzyme, indoleamine oxygenase 1. We further show that reduced NAD+ production in mdx skeletal muscle after subordination stress exposure corresponded with elevated levels of NAD+ catabolites produced by ectoenzyme cluster of differentiation 38 (CD38) that have been implicated in lethal mdx response to pharmacological ß-adrenergic receptor agonism. However, genetic CD38 ablation did not prevent mdx scruff-induced inactivity. Our data do not support a direct contribution by the kynurenine pathway or CD38 metabolic dysfunction to the exaggerated stress response of mdx mice.


Assuntos
ADP-Ribosil Ciclase 1 , Indolamina-Pirrol 2,3,-Dioxigenase , Glicoproteínas de Membrana , Distrofia Muscular de Duchenne , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Camundongos , Modelos Animais de Doenças , Ácido Cinurênico/metabolismo , Cinurenina/metabolismo , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/patologia , NAD/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Glicoproteínas de Membrana/metabolismo , ADP-Ribosil Ciclase 1/metabolismo
15.
Transpl Immunol ; 82: 101987, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38218230

RESUMO

BACKGROUND: Epidermal cell transplantation is a feasible treatment option for large wounds; however, sources of autologous epidermal cells are often limited. Allogeneic epidermal cells can be cultured conveniently; however, related immune rejection needs to be addressed. Herein, we hypothesized that the immunogenicity of epidermal cells with high indoleamine 2,3-dioxygenase (IDO) expression may be reduced by gene transfection. METHODS/RESULTS: To test this hypothesis, we obtained stable transfectants by transfecting epidermal stem cells with a lentiviral vector encoding the IDO gene and screening them for puromycin resistance (a marker for successful transfection). The phenotype tested using cell counting kit -8 and Transwell assays confirmed that IDO-transfected epidermal cells maintained their characteristics. Co-culture of IDO-transfected epidermal cells with allogeneic CD4+ T cells in vitro showed that the upregulation of IDO expression in epidermal cells inhibited the proliferation of CD4+ T cells (P < 0.001, P < 0.001, and P < 0.001, respectively) and promoted their apoptosis (P = 0.00028, P = 0.0006, and P = 0.00247, respectively) and transformation into functional regulatory T cells (Tregs) (P = 0.0051, P = 0.0132, and P = 0.0248, respectively) compared with Con, NC, and 1-MT groups. The increased proportion of Tregs may be related to the overexpression of IDO, which promoted the expression of transforming growth factor beta (TGF-ß) (P = 0.0001, P = 0.0013, and, P = 0.0009) and interleukin (IL) 10 (IL-10) (P = 0.0062, P = 0.0058, and P = 0.0119) while inhibited the expression of IL-2 (P = 0.0012, P = 0.0126, and P = 0.0066). We further verified these effects in vivo as transplanted IDO-transfected epidermal stem cells were effective in treating wounds in mice. On days 5 and 7, wounds treated with IDO cells healed faster than those in the other groups (day 5: P = 0.012 and P = 0.0136; day 7: P = 0.0242 and P = 0.0187, respectively), whereas this effect was significantly inhibited by 1-methyltryptophan (1-MT) (day 5: P = 0.0303; day 7: P = 0.0105). Immunofluorescence staining detected IDO and CD4+ Foxp3+ Tregs in the transplanted wounds, which may promote Foxp3+ Tregs in the wound tissue (day 5: P < 0.0001, P < 0.0001, and P < 0.0001; day 7: P < 0.0001, P < 0.0001, and P < 0.0001), respectively) and decrease CD4+ T cells (day 5: P < 0.0001, P < 0.0001, and P < 0.0001; day 7: P < 0.0001, P < 0.0001, and P < 0.0001). CONCLUSION: Our results suggest that the upregulation of IDO expression in epidermal stem cells can reduce their immunogenicity by promoting Tregs, thus inducing the immune protection of epidermal stem cells.


Assuntos
Células Epidérmicas , Linfócitos T Reguladores , Animais , Camundongos , Regulação para Cima , Camundongos Endogâmicos C57BL , Células Epidérmicas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo
16.
Biol Trace Elem Res ; 202(3): 1140-1149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37392360

RESUMO

Cadmium (Cd)-induced immunotoxicity has become a matter of public health concern owing to its prevalence in the environment consequently, great potential for human exposure. Zinc (Zn) has been known to possess antioxidant, anti-inflammatory, and immune-boosting properties. However, the ameliorating influence of Zn against Cd-induced immunotoxicity connecting the IDO pathway is lacking. Adult male Wistar rats were exposed to normal drinking water with no metal contaminants (group 1), group 2 received drinking water containing 200 µg/L of Cd, group 3 received drinking water containing 200 µg/L of Zn, and group 4 received Cd and Zn as above in drinking water for 42 days. Cd exposure alone significantly triggered the splenic oxidative-inflammatory stress, increased activities of immunosuppressive tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenases (IDO) activities/protein expression, and decreased CD4+ T cell count, and a corresponding increase in the serum kynurenine concentration, as well as alterations in the hematological parameters and histologic structure when compared with the control (p < 0.05). Zn alone did not have any effect relative to the control group while co-exposure significantly (p < 0.05) assuaged the Cd-induced alterations in the studied parameters relative to the control. Cd-induced modifications in IDO 1 protein expression, IDO/TDO activities, oxidative-inflammatory stress, hematological parameters/CD4+ T cell, and histological structure in the spleen of rats within the time course of the investigation were prevented by Zn co-exposure via inhibition of Cd uptake.


Assuntos
Água Potável , Zinco , Ratos , Masculino , Humanos , Animais , Ratos Wistar , Zinco/farmacologia , Zinco/metabolismo , Cádmio/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/farmacologia , Baço/metabolismo , Estresse Oxidativo , Linfócitos T/metabolismo , Linfócitos T CD4-Positivos
17.
Transpl Immunol ; 82: 101960, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38007171

RESUMO

PURPOSE: Allograft rejection is still the main cause of corneal transplantation failure. Therefore, we investigated the role of indoleamine 2,3-dioxygenase (IDO)-transfected bone marrow-derived mesenchymal stem cells (IDO-BMSCs) in corneal allograft rejection in rats. METHODS: IDO-BMSCs were constructed and co-cultured with CD4+CD24- T cells to detect their effects on the proliferation of CD4+CD25-T cells in vitro. A corneal allograft rat model was used to confirm our in vitro and in vivo observations. Therefore, IDO-BMSCs were injected directly into the recipient's conjunctiva on the day of corneal transplantation and on day 5 after operation. Corneal graft rejection indices, including corneal neovascularization, opacity, and edema, were measured for up to 14 days after transplantation. The recipients' cervical lymph nodes and peripheral blood were collected to test the role of IDO-BMSCs in immune cells using flow cytometry. RESULTS: The lentivirus-mediated IDO gene was successfully transfected into BMSCs, which stably secreted the IDO protein. The proliferation of CD4+CD25-T cells was significantly inhibited after their co-culture with IDO-BMSCs. Subconjunctival injection of IDO-BMSCs into corneal allografts of rats effectively reduced graft neovascularization, promoted allograft survival, and induced immune tolerance. Both CD4+ and CD8+ T cells in the local lymph nodes and peripheral blood, along with CD4+CD25-T cells in the local lymph nodes, were significantly reduced after transplantation. CONCLUSION: Our results suggest that IDO-BMSC treatment enhances the direct immunomodulatory effect of corneal allograft transplants in rats, promoting corneal allograft survival by inhibiting the proliferation of CD4+, CD8+, and CD4+CD25-T cells. Therefore, modification of BMSCs by lentivirus-mediated IDO gene transfection may provide a novel strategy for controlling corneal allograft rejection.


Assuntos
Transplante de Córnea , Células-Tronco Mesenquimais , Ratos , Animais , Linfócitos T CD8-Positivos , Medula Óssea/metabolismo , Rejeição de Enxerto , Sobrevivência de Enxerto , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Proliferação de Células
18.
Breast Cancer ; 31(1): 135-147, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981615

RESUMO

BACKGROUND: Triple-negative breast cancers (TNBC) are highly aggressive malignancies with poor prognosis. As an essential enzyme in the tryptophan-kynurenine metabolic pathway, indoleamine 2,3 dioxygenase-1 (IDO-1) has been reported to facilitate immune escape of various tumors. However, the mechanism underlying the immunosuppressive role of IDO-1 in TNBC remains largely uncharacterized. METHODS: We examined the IDO-1 expression in 93 clinical TNBC tissues and paired adjacent normal tissues, and analyzed the regulation role of environmental cytokines like IFN-γ in IDO-1 expression. The effect of IDO-1 expression in TNBC cells on the function of NK cells were then evaluated and the underlying mechanisms were exploited. RESULTS: IDO-1 expressed in 50 of 93 (54.1%) TNBC patients. TNBC patients with high IDO-1 expression tended to have more infiltrated immune cells including NK cells, which are less active than patients with low IDO-1 expression. NK cells could produce IFN-γ, which induced IDO-1 expression in TNBC cells, whereas IDO-1 impaired the cytotoxicity of co-cultured NK cells by upregulation of HLA-G. Blockade of HLA-G improved the antitumor activity of NK cells to TNBC in vivo. CONCLUSION: TNBC cells induce dysfunction of NK cells through an IFN-γ/IDO-1/HLA-G pathway, which provide novel insights into the mechanisms of TNBC progression and demonstrate the applicability of IDO-1 and HLA-G targeting in the treatment of TNBC.


Assuntos
Antígenos HLA-G , Neoplasias de Mama Triplo Negativas , Humanos , Antígenos HLA-G/metabolismo , Antígenos HLA-G/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/farmacologia , Células Matadoras Naturais/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação para Cima
19.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003426

RESUMO

Indoleamine 2,3-dioxygenase 2 (IDO2) is a paralog of Indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan-degrading enzyme producing immunomodulatory molecules. However, the two proteins are unlikely to carry out the same functions. IDO2 shows little or no tryptophan catabolic activity and exerts contrasting immunomodulatory roles in a context-dependent manner in cancer and autoimmune diseases. The recently described potential non-enzymatic activity of IDO2 has suggested its possible involvement in alternative pathways, resulting in either pro- or anti-inflammatory effects in different models. In a previous study on non-small cell lung cancer (NSCLC) tissues, we found that IDO2 expression revealed at the plasma membrane level of tumor cells was significantly associated with poor prognosis. In this study, the A549 human cell line, basally expressing IDO2, was used as an in vitro model of human lung adenocarcinoma to gain more insights into a possible alternative function of IDO2 different from the catalytic one. In these cells, immunocytochemistry and isopycnic sucrose gradient analyses confirmed the IDO2 protein localization in the cell membrane compartment, and the immunoprecipitation of tyrosine-phosphorylated proteins revealed that kinase activities can target IDO2. The different localization from the cytosolic one and the phosphorylation state are the first indications for the signaling function of IDO2, suggesting that the IDO2 non-enzymatic role in cancer cells is worthy of deeper understanding.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Fosforilação , Triptofano/metabolismo
20.
Anticancer Res ; 43(12): 5275-5282, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030171

RESUMO

Kynurenine 3-monooxygenase (KMO), a key enzyme within the kynurenine (KYN) pathway of tryptophan (TRY) metabolism, enables the excess production of toxic metabolites (such as 3-hydroxykynurenine, xanthurenic acid, 3-hydroxyanthranilic acid and quinolinic acid), and modulates the balance between these toxic molecules and the protective metabolite, kynurenic acid (KYNA). Despite its importance, KMO suppression as a treatment for cancer has not been fully explored. Instead, researchers have focused on prevention of KYN pathway activity by inhibition of enzymes indoleamine 2,3-dioxygenase (IDO1 and IDO2) or tryptophan 2,3-dioxygenase (TDO, also known as TDO2). However, studies using IDO/TDO inhibitors against cancer have not yet shown that this type of treatment can be successful. We argue that KMO suppression can be an effective strategy for treatment of cancer by 1) decreasing toxic metabolites within the KYN pathway and 2) increasing levels of KYNA, which has important protective and anticancer properties. This strategy may be beneficial in the treatment of aggressive breast cancer, particularly in patients with triple-negative breast cancer. A major challenge to this strategy, when searching for an effective treatment for tumors, especially tumors like breast carcinoma that often metastasize to the brain, is finding KMO inhibitors that adequately cross the blood-brain barrier.


Assuntos
Quinurenina 3-Mono-Oxigenase , Neoplasias de Mama Triplo Negativas , Humanos , Quinurenina 3-Mono-Oxigenase/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Triptofano , Cinurenina/metabolismo , Encéfalo/metabolismo , Resultado do Tratamento , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA